

•

Select and Dispatch Tool: Final Report
July 2023

Author: TNEI

 Final Report

Select and Dispatch Tool
SSEN

15330-10-R1
31 July 2023

CLIENT'S DISCRETION

Final Report
Select and Dispatch Tool 1

Quality Assurance
TNEI Services Ltd, TNEI Africa (PTY) Ltd and
TNEI Ireland Ltd operate an Integrated
Management System and is registered with
The British Assessment Bureau as being
compliant with ISO 9001 (Quality), ISO 14001
(Environmental) and ISO 45001 (Health and
Safety).

Disclaimer
This document is issued for the sole use of the
Customer as detailed on the front page of this
document to whom the document is
addressed and who entered into a written
agreement with TNEI. All other use of this
document is strictly prohibited and no other
person or entity is permitted to use this report
unless it has otherwise been agreed in writing
by TNEI. This document must be read in its
entirety and statements made within may be
based on assumptions or the best information
available at the time of producing the
document and these may be subject to
material change with either actual amounts
differing substantially from those used in this
document or other assumptions changing
significantly. TNEI hereby expressly disclaims
any and all liability for the consequences of any
such changes. TNEI also accept no liability or
responsibility for the consequences of this
document being relied upon or being used for
anything other than the specific purpose for
which it is intended, or containing any error or
omission which is due to an error or omission
in data used in the document that has been
provided by a third party.

This document is protected by copyright and
may only be reproduced and circulated in
accordance with the Document Classification
and associated conditions stipulated or
referred to in this document and/or in TNEI’s
written agreement with the Customer. No part
of this document may be disclosed in any
public offering memorandum, prospectus or
stock exchange listing, circular or
announcement without the express and prior
written consent of TNEI. A Document
Classification permitting the Customer to

redistribute this document shall not thereby
imply that TNEI has any liability to any recipient
other than the Customer.

Any information provided by third parties that
is included in this report has not been
independently verified by TNEI and as such
TNEI accept no responsibility for its accuracy
and completeness. The Customer should take
appropriate steps to verify this information
before placing any reliance on it.

Final Report
Select and Dispatch Tool 2

Document Control

Revision Status Prepared by Checked by Approved by Date

R0 FIRST ISSUE OP, MM, SS, GM SS, GM GM 24/07/2023

R1 CLIENT COMMENTS OP, MM, SS, GM SS, GM GM 31/07/2023

TNEI Services Ltd

Company Registration Number: 03891836 VAT Registration Number: 239 0146 20

Registered Address

Bainbridge House

86-90 London Road

Manchester

M1 2PW

Tel: +44 (0)161 233 4800

7th Floor West One

Forth Banks

Newcastle upon Tyne

NE1 3PA

Tel: +44 (0)191 211 1400

7th Floor

80 St. Vincent Street

Glasgow

G2 5UB

Tel: +44 (0)141 428 3180

TNEI Ireland Ltd

Registered Address: 104 Lower Baggot Street, Dublin 2, DO2 Y940

Company Registration Number: 662195 VAT Registration Number: 3662952IH

Unit S12, Synergy Centre

TU Dublin Tallaght Campus

Tallaght

D24 A386

Tel: +353 (0)190 36445

TNEI Africa (Pty) Ltd

Registered: Mazars House, Rialto Rd, Grand Moorings Precinct,7441 Century City, South Africa

Company Number: 2016/088929/07

Unit 514 Tyger Lake

Niagara Rd & Tyger Falls Blvd

Bellville, Cape Town

South Africa, 7530

Final Report
Select and Dispatch Tool 3

Executive Summary

Introduction

This report provides an overview of the Select and Dispatch (S&D) tool, developed by TNEI under
project TRANSITION led by Scottish and Southern Electricity Networks (SSEN) and partnered
Distribution Network Operators (DNOs).

TRANSITION is a five-year Network Innovation Competition (NIC) funded project exploring the market
and technology elements of flexibility within the electricity system. By developing two IT systems (a
Neutral Market Facilitation (NMF) Platform and an associated Whole System Coordinator (WSC) tool),
TRANSITION enables the advertisement of flexibility needs and running of a series of flexible events
including Distribution System Operator (DSO)-Procured Services and DSO-Enabled services. These IT
systems operate in conjunction with a forecasting tool and a power system analysis engine to facilitate
decentralised flexibility services on the distribution network. The focal point of the project is a
sequence of large-scale physical trials of several flexible services on SSEN’s Oxfordshire network,
coordinated by the novel flexibility platform and run by SSEN. The TRANSITION project also informs
and collaborates closely with the ENA Open Networks programme, within which both SSEN and ENWL
are heavily active.

The aim of TNEI’s scope of work for the S&D tool was to develop a decision support tool for procuring
flexibility services and dispatching awarded contracts to mitigate future constraints at various time
horizons. S&D was used by SSEN with various sets of off-the-shelf and bespoke software, such as the
forecasting solution from Sia Partners, Opus One Solutions' NMF, and DIgSILENT's PowerFactory
software for Power Systems Analysis (PSA). Together, these solutions form the end-to-end process for
procuring and dispatching flexibility.

This document covers the functionality of the S&D tool, a solution overview complementing the initial
design document constraints influencing the decision-making, support and development throughout
trials, and valuable insights and recommendations from the project's implementation.

Solution Overview

The S&D tool is specifically designed to facilitate operational strategic decision-making in the
procurement and dispatch of flexibility contracts. It evaluates bids from flexibility providers based on
their market value and effectiveness in mitigating thermal constraints in the distribution network. The
tool incorporates various qualifying techno-economic constraints, such as provider capacity limits,
total contract value limits, and service independence, to generate an optimal solution for resolving
the constraints.

The core functionality of the S&D tool is powered by an optimisation solver model developed for the
project. This solver selects the best combination of contracts to meet requirements while minimising
costs. The system architecture is hierarchically designed, with the solver as the central component,
supported by surrounding code and functionality. The overall process flow within the S&D tool is
outlined in a corresponding figure.

Learnings and Recommendations

Throughout the course of the project, several valuable lessons were learned, including:

• Design and development: The modular approach taken to development was found to be very
helpful, although there were some rare and unforeseen issues that arose due to interactions
between different bits of the tool. However, it may have been beneficial to plan from the
outset for using a more agile, iterative approach to design and development, embracing all
the principles and practices of DevOps through every stage.

Final Report
Select and Dispatch Tool 4

• Testing: Tests were developed in parallel to each module to ensure they behaved as expected.
However, some time for testing was lost due to the design of the tool taking longer than
anticipated to finalise. This also affected User Acceptance Testing, with some issues only
discovered very late. Moreover, less refined requirements proved to be challenging to
explicitly test due to the absence of some specific details around the desired criteria.

• Integration: The file system interface was critical to both S&D and the PSA system and was a
focus during the design phase. However, there were still some slight differences in
assumptions and approaches made by developers, which led to some issues during testing.
The watchdog system operated well, however there was some duplication of effort due to
S&D and PSA having separate watchdogs. It would have also been beneficial to spend more
time evaluating different optimisation solver options (in terms of accuracy, reliability, and
computation time).

• User Experience: A bespoke Graphical User Interface (GUI) was developed for users of the
tool, however, after design, there was relatively limited time available for end-users to test
this and provide feedback, and some very good suggestions could not be incorporated. Issues
and bugs within the GUI proved to be difficult to identify as this was reliant on manual use. A
thorough manual testing framework, or even an automated framework, could have been
useful. A further significant challenge was that, while the underlying optimisation approach
was completely transparent, there was sufficient complexity that it was viewed by users as a
black-box, with insufficient outputs within the tool to explain every decision recommended
by the tool.

• Ways of Working: Both SSEN and TNEI provided multi-disciplinary teams, and roles and
responsibilities were, in general, clearly defined. Some of these roles were harder to separate
in practice: for example, the TNEI team ended up requiring a detailed knowledge of how PSA
worked, while at the outset of the project it was expected that all that mattered was the
interface. An additional role with responsibility for the entire suite of integrated tools
(including S&D, PSA, and the swivel-chair role) could have proved useful – considered as a
Solution Architect. The overlapping interaction of the design and development phases
required upkeep of a dynamic design document, which would be the primary responsibility of
the Solution Architect. This role would involve maintaining a holistic overview of the changing
interfaces, assumptions and functional processes involved across the entire system.

• Select and dispatch for decision support: Some of the more complex practical details about
how flexibility services are procured and dispatched – such as maximum dispatch durations
and the inability to partially accept responses - were not reflected in the S&D tool’s design.
This would need further development in the future but would require a more onerous type of
optimisation. In addition, more thought is required about how to deal with cases where there
is insufficient flexibility availability. For the purposes of the trials, TNEI and SSEN have used
the concept of “dummy flexibility”, but for business-as-usual implementation of a more
realistic alternative will be required.

Recommendations that could improve future development efforts include:

• Adopt a blended agile methodology across design and development.

• Define and deliver a Minimum Viable Product (MVP) prior to live deployment.

• Incorporate dedicated time for modular and systematic testing.

• Produce a software-orientated requirements set which are collaboratively built from the RTC
requirements produced by SSEN and which would help define specific comparable outcomes
of the functional and non-functional processes of the tool.

Final Report
Select and Dispatch Tool 5

• Implement programmatic methodologies for interfacing systems.

• Provide automated solution interpretation for complex optimization processing.

By implementing these lessons learned, future developments can benefit from increased

collaboration, faster development cycles, better testing processes, clearer requirements, improved

interfacing, and enhanced understanding of complex optimisation mechanisms.

Final Report
Select and Dispatch Tool 6

Contents

Document Control... 2

Executive Summary ... 3

Contents .. 6

1 Introduction .. 8

2 Context .. 9

2.1 Flexibility Markets ... 9

2.2 Key Solution Requirements ... 10

2.3 Technical and Commercial Limitations ... 11

2.3.1 Layering of services ... 11

2.3.2 Partial acceptance and dispatch duration .. 12

2.3.3 Linearised sensitivity factors ... 12

2.3.4 File-based interface between PSA and S&D ... 13

2.3.5 IT Environment .. 14

3 Solution Overview ... 15

3.1 Design .. 15

3.2 Architecture .. 16

3.3 Optimisation Solver ... 17

3.3.1 Calculating flexibility requests .. 17

3.3.2 Selecting and dispatching flexible contracts through an optimisation solver 18

3.4 Back-end Interface .. 20

3.5 User Interface ... 20

3.6 Security ... 25

4 Results of S&D Testing .. 26

4.1 Requirement Testing ... 26

4.2 Functional testing.. 26

4.3 Testing and development during UAT and trial blocks ... 27

5 Learnings and Recommendations ... 28

5.1 Recommendations .. 42

Appendix A – S&D Change Logs .. 44

Appendix B – Requirement testing results ... 48

Final Report
Select and Dispatch Tool 7

FIGURES

Figure 1: Example of linearised sensitivity factor representation .. 13

Figure 2: Overview of process flow ... 15

Figure 3: Block Diagram of S&D tool structure ... 17

Figure 4: Translation of requirements to requests ... 18

Figure 5: Optimisation solution space and infeasible regions .. 18

Figure 6: Interaction of constraints... 19

Figure 7: Optimal solution .. 19

Figure 8: Homepage of tool .. 21

Figure 9: Requests window of tool ... 22

Figure 10: Select page of tool. .. 23

Figure 11: Dispatch page of tool. .. 23

Figure 12: Explore data page .. 24

Figure 13: General settings window ... 24

Figure 14: Context window view for all data related to request ID 2888 ... 25

Figure 15: Requirement test results ... 48

Figure 16: Response selection test results .. 49

Figure 17: Dispatch selection test results ... 50

TABLES

Table 1: Flexibility Service Characteristics .. 10

Table 2: Learnings and future opportunities .. 30

Final Report
Select and Dispatch Tool 8

1 Introduction

This report provides an overview of the Select and Dispatch (S&D) tool, developed by TNEI under
project TRANSITION led by Scottish and Southern Electricity Networks (SSEN) and partnered
Distribution Network Operators (DNOs).

TRANSITION is a five-year Network Innovation Competition (NIC) funded project exploring the market
and technology elements of flexibility within the electricity system. By developing two IT systems (a
Neutral Market Facilitation (NMF) Platform and an associated Whole System Coordinator (WSC) tool),
TRANSITION enables the advertisement of flexibility needs and running of a series of flexible events
including Distribution System Operator (DSO)-Procured Services and DSO-Enabled services. These IT
systems operate in conjunction with a forecasting tool and a power system analysis engine to facilitate
decentralised flexibility services on the distribution network. The focal point of the project is a
sequence of large-scale physical trials of several flexible services on SSEN’s Oxfordshire network,
coordinated by the novel flexibility platform and run by SSEN. The TRANSITION project also informs
and collaborates closely with the ENA Open Networks programme, within which both SSEN and ENWL
are heavily active.

The aim of TNEI’s scope of work for the S&D tool was to develop a decision support tool for procuring
flexibility services and dispatching awarded contracts to mitigate future constraints at various time
horizons. S&D was used by SSEN with various sets of off-the-shelf and bespoke software, such as the
forecasting solution from Sia Partners, Opus One Solutions’ NMF, and DIgSILENT’s PowerFactory
software for Power Systems Analysis (PSA). Together, these solutions form the end-to-end process for
procuring and dispatching flexibility.

This document covers the functionality of the S&D tool, a solution overview complementing the initial
design document constraints influencing the decision-making, support and development throughout
trials, and valuable insights and recommendations from the project’s implementation.

Final Report
Select and Dispatch Tool 9

2 Context

This section outlines the rational for developing the S&D tool, including the overall objectives and any
design constraints or limitations.

2.1 Flexibility Markets

The future landscape of power systems operations is indeed expected to face significant challenges as
the energy system transitions towards net-zero. Integration of intermittent renewables, increasing
commercial load peaks, and the rise of digitisation are transforming the way power systems function,
leading to a more dynamic and complex environment. This new landscape requires development of
more automated decision-making processes and platforms to ensure system balancing is supported.
Many of these challenges can be met with flexibility however, this presents additional challenges
when delivering these solutions effectively and at scale.

Integrating intermittent renewable energy sources such as wind and solar creates a power system
with high variability. These sources are dependent on weather conditions, which are inherently
unpredictable. This adds a layer of complexity to the task of balancing supply and demand in real-time.
Moreover, rising load peaks present a challenge in Britain’s power systems.

Tools such as S&D will enable power system operators to dynamically manage and optimise the
dispatch of flexible resources to meet fluctuating demand and mitigate the challenges posed by
intermittent renewables. By leveraging advanced algorithms and real-time data, these tools can
precisely and swiftly allocate available flexible resources, such as energy storage systems or demand
response programs, to address load peaks efficiently. This ensures that demand is met in a cost-
effective manner, reducing the need for costly infrastructure upgrades, or relying solely on traditional
power generation.

Efficient management of interconnected data sources within prescriptive algorithms which provide
clear instructions for more informed and effective decision-making will be fundamental. In essence,
the future operability of power systems hinges on the integration of automated decision-support
platforms, within standardised flexibility market regimes.

DNOs, including SSEN, are playing a crucial role in standardising flexibility services within the power
system. Recognising the importance of flexibility to accommodate the evolving energy landscape,
DNOs are actively working towards establishing consistent frameworks and protocols that enable
effective utilisation of flexible resources. SSEN, as one of the leading DNOs, is at the forefront of these
efforts. By actively engaging with industry stakeholders, regulators, and market participants, they
continue to develop standardised mechanisms. This drive is essential to streamline the procurement
and deployment of flexible assets, ensuring their optimal utilisation for enhancing system resilience,
reducing network constraints, and facilitating the transition towards a sustainable and reliable energy
future.

The flexibility markets being trialled in this project includes four services which can be broadly defined
by the network scenarios and time windows within which they resolve constraints.

Final Report
Select and Dispatch Tool 10

Table 1: Flexibility Service Characteristics

Service Time Window Network Scenario

Sustain Peak Management (SPM) 3pm to 7pm Intact

Sustain Export Peak Management (SEPM) 10am to 2pm Intact

Secure Constraint Management (SCM) 12am to 12am
N-1 (single asset outage, due to
maintenance or failure)

Dynamic Constraint Management (DCM) 12am to 12am
N-1-1 (single asset outage, followed by a
second asset outage) / N-2 (outage of two
assets)

Each Service except for DCM is procured in two market windows: week ahead, and day ahead. In
practice, responses are gathered and process a week before the event, then a day before. Week ahead
contracts will procure 80% of the identified requirement to ensure there is still liquidity at the day-
ahead stage, and to account for the uncertainty within forecasts. As the event date approaches it is
expected that the forecast will improve, enabling the tool to determine how much, if any, remaining
flexibility requirement is needed.

The specific purpose and reasoning for these services will not be explained in this report, more details
can be found in the reports issued by the TRANSITION team1.

2.2 Key Solution Requirements

The Select and Dispatch (S&D) tool is designed to support operational decision-making in the
procurement and dispatch of flexibility contracts. It gathers bids from flexibility providers, evaluating
them based on their market value and efficacy in alleviating future thermal constraints in the
distribution network. The S&D tool considers other qualifying techno-economic constraints, such as
the maximum capacity of providers, the limits of total contract value, and service independence,
which prevents service layering by providers, to produce an optimal solution for resolving the
constraint. The primary high-level requirements, are as follows:

• Data Management: The S&D tool captures and records data inputs, such as flexibility

requirements generated by Power Systems Analysis (PSA) across various network scenarios and

the flexibility bids from the market which are inputted by the DSO swivel chair user2.

• Data Processing/Calculations: The tool is also capable of computing and delivering crucial

outputs: flexibility requests to meet future network constraints, requirements optimal

combinations of flexibility responses (determined via a bounded linear programming problem)

to fulfil a flexibility request, and the requisite active power dispatch of available contracts to

mitigate a future constraint at different time horizons. These calculations have been designed

to incorporate linearised sensitivity factors, provided by SSEN’s Power Systems Analysis (PSA)

platform. These are discussed later in section 3.

• Integration: The S&D tool is built with the capacity to interface with supporting systems, such

as with SSEN's self-scripted PSA, and the Neutral Market Facilitator (NMF). The tool is designed

1 TRANSITION project reports can be found on the project library: https://ssen-transition.com/library/
2 The DSO swivel chair role was the main user of the S&D tool and was also responsible for the manual
interface between S&D and the NMF.

https://ssen-transition.com/library/

Final Report
Select and Dispatch Tool 11

to align with the NMF platform's information delivery and acceptance, a process that relies on

manual data entry by the DSO swivel chair user.

• User Interface: The S&D tool’s user interface is designed with simplicity and efficiency in mind,

enabling users to smoothly navigate through the stages of the select and dispatch process.

Efficient data entry supports the flow of diverse datasets, and a file-based data provision

method facilitates multiple entries/exports.

These requirements constitute to forming the minimum viable product of the S&D tool and have
informed the design and development of the underlying processes.

2.3 Technical and Commercial Limitations

This section discusses some of the most important constraints imposed on the design and
development of the S&D tool.

2.3.1 Layering of services

Early on in the process of designing the S&D tool, SSEN highlighted that they intended for the services
to be capable of being layered with each other. In principle, Sustain is intended for managing the
network in its intact state, Secure is intended for managing the network in an N-1 condition (either a
contingency or for maintenance), and Dynamic is intended for managing the network in an N-1-1
condition.

However, in practice, when the time came to dispatch services, SSEN intended to use any services
available to resolve any network issues, irrespective of the network configuration. This means that
Dynamic, although nominally for resolving issues under an N-1-1 condition, could still be used to
resolve issues under intact or N-1 conditions. This may be necessary due to the lead-times associated
with the different services: Sustain is dispatched at a lead-time of 12-hours and Secure is dispatched
at a lead-time of 4 hours, and Dynamic has a lead-time of 30 minutes. Therefore, SSEN may wish to
layer Dynamic services on top of these other services closer to real-time in the event that the forecast
available at 12-hours and 4-hours led to an underestimate of the required flexibility.

As well as layering between services, it is also possible for services at different voltage levels to be
substituted for each other. For example, a service provided at a lower voltage level of the system could
in theory meet requirements at all of the voltage levels above that.

The logic that underpins how different services may be layered with or supported by each other was
not defined within the initial requirements at the outset of the project. Instead, SSEN developed this
logic in parallel with the creation of the High-Level Design and Low-Level Design of the S&D tool by
TNEI. Some of the detail of this logic proved to be very nuanced and, at points, different members of
the SSEN and TNEI teams had subtly but critically different understandings of the design intent.
Elements of the approach were still being finalised during active development of the tool, after the
Low-Level Design had been nominally finalised.

The ultimate approach reflected in the deployed version of the tool was that there is no recognition
of the possible layering and substitution of services at the start of procurement, but that this is
increasingly accounted for as the process is stepped-through:

• At the request creation stage, a unique request is made for each voltage level – not

acknowledging the ability of lower voltage level services to also meet higher voltage level

requirements – and for every network configuration (with a one-to-one mapping of network

configurations to the types of services).

Final Report
Select and Dispatch Tool 12

• At the response selection stage, the tool acknowledges the ability of services at different

voltage levels to substitute for each other. This means that the total MW volume of responses

selected could be lower (and potentially much lower) than the total MW of requests created if

there are requirements at multiple voltage levels.

• At the dispatch contracts stage, the tool acknowledges the ability of different services to stand

in for each other irrespective of the network configuration.

2.3.2 Partial acceptance and dispatch duration

The TNEI team decided early in the design phase to represent the underlying decision-making
problems as constrained optimisation problems, due to some of the complexities involved which
made it hard to frame the problem as a simple ranking exercise. For simplicity and tractability, a
decision was made not to implement an Integer or Mixed Integer optimisation – these are generally
much harder to solve, meaning slower computational times, different (and perhaps less reliable)
solvers, etc.

As the design progressed, some aspects of the commercial design were identified which might be
inconsistent with this and would ideally require a Mixed Integer formulation. One such issue was the
limitation on dispatch durations within the Flexibility Services Agreement (FSA), which mean that any
flexibility services provider can be dispatched for a maximum duration, which is defined with their
individual FSA. Formulating this within the optimisation model would have required an integer
approach, with binary variables denoting whether or not a response is being dispatched in each hour.
This would be required for BAU adoption of the tool, however, SSEN advised that this could be
managed by the DSO swivel chair users of the tool for the delivery of the technical trials.

Another limitation was the consideration of response capacity as a continuous variable – the logic of
the optimisation within S&D means that costs are considered based on the ability to partially accept
a response. For example, if a response is provided with a capacity of 5 MW, the logic of the tool would
be able to consider the option of accepting just 3 MW of this. However, in practice, SSEN wished to
treat selection as a binary decision: responses are either rejected entirely, or they are fully selected
with the full amount. This was adopted for consistency with the NMF platform that was designed for
the earlier TRANSITION trials, which S&D would need to interface with. Reflecting partial acceptance
within the S&D tool would have required integer variables.

2.3.3 Linearised sensitivity factors

An acknowledged design constraint of the whole system (PSA and S&D) is in the sensitivity factors,
which are a representation of a flexibility assets impact on a network asset. Upon request, the PSA
system calculates sensitivity factors for a set of flexibility-providing assets based on their offered
amounts, providing these for the constrained assets within the network scenario. PSA returns its
representation of this sensitivity as a single signed floating-point number, which S&D interprets as the
gradient of a linearised version of a power flow, with an intercept of zero. S&D is agnostic to exactly
how this calculation is achieved within PSA. While the TNEI and SSEN teams expect this linearised
assumption will perform well on most occasions, there is some potential drawbacks that arise from
not fully considering the non-linear behaviour of power flow in reality.

The example given in Figure 1 is a hypothetical representation of the true constraint impact for
increasing amounts of offered power from an asset alongside its linearised estimation. In this example
the gradient of the linear estimation is the sensitivity factor used by the tool.

Final Report
Select and Dispatch Tool 13

Figure 1: Example of linearised sensitivity factor representation

This linear representation was deemed sufficient within the scope of the technical trials; however, it
introduces some limitations that should be considered in future work:

• Each step of the selection and dispatch process is validated by PSA, ensuring S&D will not

return a solution that falls short of the requirement. Any inaccuracy introduced from the

linearisation of sensitivity factors will be accounted for as part of this iterative validation

process. However, these potentially avoidable iterations will likely introduce performance

bottle necks and so a pragmatic trade-off between computation time and validation needs

would need to be considered.

• Whilst the error between the linearised and true value of the sensitivity factor is typically small,

this can impact the optimisation, which may be unable to identify a potentially better solution

which exploits the complex relationships between assets.

• Furthermore, the accuracy of the linearisation is very dependent on the size of the provider’s

response.

In future work, the representation of sensitivity factors could be improved but this will introduce
additional complexity into the process. Options might include:

• PSA returns more granular data describing the sensitivity factors in steps which may then be

interpolated,

• PSA returns non-linear sensitivity factors using a form which better represents sensitivity factor

response curves.

2.3.4 File-based interface between PSA and S&D

The interaction format between PSA and S&D was predetermined as part of the system specification.
To achieve a clear and easy-to-follow process flow, the communication between PSA and S&D takes
place through a file-based approach. With the small size of the files being shared, SSEN adopted this
approach for its anticipated advantages, including the visibility of the data being transferred and the
ease of sharing data with other parties for testing and bug fixing. In this communication method, the
platforms exchange information using Excel files, with the contents interpreted and processed based
on the file name.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

C
o

n
st

ra
in

t
Im

p
ac

t
(k

W
)

Offered Power (kW)

Offered Power Impact on Constraint

Constraint Impact

Linearised Constraint Impact

Final Report
Select and Dispatch Tool 14

Since this form of communication is a non-standard process, it requires the development of interfacing
code capable of monitoring and interpreting these files. The PSA and S&D developers implemented
this system separately, considering their solutions' dependence on the system architecture.

The key technical limitations that arose from this approach include:

• Limited data transfer capabilities: file-based communication has limitations on the flexibility

and volume of data that can be effectively exchanged, posing challenges through development

and testing. Excel files are explicitly limited by volume, which can lead to data loss and process

corruption.

• Lack of real-time event handling: file-based communication relies on periodic polling and lacks

the ability to handle events or notifications in real-time.

• Dependency on file structures: the interface relies on predefined and strict Excel file

structures, making any changes to the internal structure or naming requires modifications in

the interfacing code and potentially leading to compatibility issues.

• Error handling and reliability: file-based interfaces introduce challenges in error handling and

ensuring reliable data transmission, such as file corruption, incomplete transfers, or concurrent

access.

• Synchronisation and coordination: if implemented as multiple threads or separate programs,

ensuring proper synchronisation and coordination between the systems can be

overcomplicated, requiring careful management of shared resources to avoid race conditions

or data inconsistencies.

2.3.5 IT Environment

The Azure Platform as a Service solutions was used by SSEN colleagues to host and deploy the PSA and
S&D tools. Some limitations of this were realised during the development phase of the project. Firstly,
the absence of parallel environments hindered fluent deployment. Ideally, the project would have
benefited from two separate environments: staging and production, so that one could be dedicated
to staging new changes and features before pushing them to the final production environment. The
lack of an additional environment had implications for end users if the staged features or changes did
not perform as expected. Detecting and rectifying these issues would have been more efficient within
a dedicated staging environment.

Additionally, the lack of redundancy posed a risk in the event of an outage or technical issue with the
environment. With no backup environment available, any disruption to the primary environment
could result in service interruptions or downtime.

Fundamentally, the limitations arose because the chosen solution was deemed overly complicated for
the needs of S&D and PSA. Alternative deployment approaches could have been considered, such as
on-premises deployment, private cloud deployment, or containerisation and orchestration. These
options would have offered more streamlined and simplified solutions, potentially mitigating the
limitations encountered with the original IT environment.

By opting for a less complex integration strategy, the project could have potentially avoided the
delays, reduced the pressure on developers, and provided a more reliable system environment.

Final Report
Select and Dispatch Tool 15

3 Solution Overview

This section describes how the S&D Tool was designed and developed to meet the aims outlined in
Section 2.

3.1 Design

Most primary functions of the S&D tool use an optimisation solver developed for this project. This
solver selects the best set of given contracts which resolves a set of requirements whilst minimising
the total cost, it is described further in Section 3.3. The solver is considered the core of the S&D tool,
so the system architecture was designed hierarchically with the solver at the centre and the supporting
code and functionality built around it. This is illustrated in Figure 2, which outlines the flow of
processes within the S&D tool.

Interface

Flex requirement

Watchdog

GUI/API

Process Problem Formulation

Optimisation Solver

Receive Flexibility

Requirements

Receive Responses Response Selection

Contract Dispatch

Determine Week/Day

Ahead Need

Figure 2: Overview of process flow

As the diagram shows, there are three types of problem the optimisation solver needs to resolve:
determining week and day ahead requests, selection of responses, and dispatching contracts. In all
cases, the solver is used sequentially to solve for each type of requirement which is covered by SPM,
SEPM, SCM, then DCM. Depending on the problem being solved the previous solution when resolving
one requirement type might be considered when resolving the next type.

There are three problems the solver is used to solve:

• Determining week/day ahead requests

o This process is conducted to determine the remaining flexibility required in an auction
when applicable contracts already exist and are available to resolve them partially or
fully. This process will occur under two circumstances:

▪ After receiving Flexibility requirements from PSA which are identified as
contributing to either week ahead or day ahead request, the tool will check if
any applicable contracts exist and solve for any it finds.

▪ After selecting week ahead contracts. The tool will determine how much
flexibility is required for the upcoming day ahead request for this
requirement.

Final Report
Select and Dispatch Tool 16

o Selection is based on all requirements with the same type – all SPM contracts for all
SPM requirements.

• Selection of Responses

o Active responses are used to solve the request they originally responded to. The
responses selected in this process become contracts at the end of the auction.

o This considers both availability price and utilisation price.

o In case of week ahead requests, this is resolved for 80% of the maximum required
capacity. Day ahead responses look to resolve the remaining, updated constraint.

o Responses are scaled using linearised sensitivity factors, as a means of simplifying the
interaction between provider and constraint.

• Dispatching of contracts

o After confirming a final set of contracts from auction close, the tool determines a set of
dispatches whenever it receives new flexibility requirements.

o Uses all contracts to resolve SPM requirements first, then uses the selected dispatches
and remaining contracts to resolve the next requirement type.

3.2 Architecture

The tool is implemented as a single python application/executable. The tool has two parallel
processes, one launches the file system watchdog to monitor for flexibility requirements from PSA,
and a second process manages the GUI, which is implemented as a web application, as well as the
REST structured API3, which the GUI communicates through. The application has a single SQL database
which stores all information about the tool’s state, and it can be accessed by all threads of system.

The application was designed so that there is a single instance of the file system watchdog which waits
for only flexibility requirement files from PSA. Upon receiving a flexibility requirement, the watchdog
will initiate appropriate processes which may go on to requesting and receiving sensitivity factors and
response results from PSA synchronously using a new watchdog instance. This means the tool will only
ever process flexibility requirement one at a time in chronological order.

However, for processing requests the flask service will create new threads as required, meaning that
the tool is capable of handling as many client requests as the hosting computer can handle. Requests
from flask will trigger the contract selection process. This process will also require using a separate
watchdog instance which requests and receives sensitivity factors and response results synchronously.

The web-application based GUI was implemented using React, a modern front-end JavaScript library
which programmatically generates HTML markup, styling, and logic within code. This allowed for fast
prototyping and development of the final GUI using a mixture of prefabricated and custom-built
components. The GUI uses the server’s API to send and receive JSON structured data. It is pre-
compiled with each release of the tool and distributed to the client’s internet browser through the
flask service when they request a page.

Figure 3 describes this architecture. The essential components of the tool are categorised by colour,
and that key is maintained throughout this section.

3 A REST API is a networking API which conforms to the REST architecture. It is a stateless and uniform
interface which communicates in standardised data formats (JSON, XML, HTTP).
https://en.wikipedia.org/wiki/Representational_state_transfer

https://en.wikipedia.org/wiki/Representational_state_transfer

Final Report
Select and Dispatch Tool 17

File System
Watchdog

API

Web app

Shared File
System

PSA

Select &
Dispatch Tool

Optimisation
Solver

Serves Data

Makes Requests

Swivel Chair Interactions

Communication with PSA

State management
through database
and internal files

Figure 3: Block Diagram of S&D tool structure

3.3 Optimisation Solver

In this section, the key functional processes outlined in Section 3.1 are described in detail.

3.3.1 Calculating flexibility requests

The first stage in the S&D process is driven by input data received from PSA. This data describes the
anticipated thermal overloading of network branch ratings, which has been formulated based on
demand forecasting data sourced from the SIA platform and topological data retrieved from NeRDA.
A simplified implementation of the optimisation solver is used to calculate necessary flexibility to
appease these future constraints.

For each individual network branch, whether a line, cable or a transformer, flexibility requirements
are assembled according to the relevant network scenario. (Network scenarios are indicative of the
operational configuration of the power network at a given point in time.) Requirements are
subsequently categorised into distinct time windows which correspond to a particular flexibility
service. Formulation of flexibility requests, within each service and location grouping, simply considers
the maximum requirement throughout the window. This maximum is scaled accordingly, accounting
for provider reliability. This is illustrated in Figure 4 below.

Final Report
Select and Dispatch Tool 18

Figure 4: Translation of requirements to requests

3.3.2 Selecting and dispatching flexible contracts through an optimisation solver

Linear optimisation (or linear programming) is a mathematical method used to find the best outcome
in a mathematical model where the objective function and constraints are represented by linear
relationships. The goal of this optimisation process within the S&D tool is to find the most cost-
effective combination of flexibility contracts that will meet a given flexibility requirement. The
objective function in this scenario is therefore the minimisation of the total cost of procured flexibility
contracts. However, this selection process must also respect several constraints, each representing a
technical or commercial limitation within the system.

Figure 5: Optimisation solution space and infeasible regions

Figure 5 illustrates a simplified example of the problem. The graph demonstrates the interactions
between different constraints and the objective function, shown in green. Considering a single
flexibility provider with a fixed availability price (y-intercept) and variable utilisation cost (slope), we
can see these dispatch options pass through both feasible and infeasible regions of the decision space.
Blue regions indicate that these options would violate one or more of the constraints.

Final Report
Select and Dispatch Tool 19

The minimum dispatch is also dependent on the linearised sensitivity factors of the contributing
provider. The sensitivity factor is inversely proportional to the degree of radial splitting between the
provider and the network constraint. These constraints are further described Figure 6. .

Figure 6: Interaction of constraints

In practice, these constraints represent physical limits (for instance, an asset cannot exceed its
maximum capacity without risking failure), commercial limits (a service has a regulatory-imposed
maximum total contract value), or system needs (such as a minimum delivery to mitigate a constraint).
By considering these constraints within the linear optimisation problem, the S&D tool can find the
optimal selection and dispatch of flexibility contracts that satisfy the requirement while also adhering
to all specified constraints.

The highlighted green region contains the optimal solution for this problem, but other options exist in
this space that satisfy the specified constraints. In this example, we simply scan across the objective
function, within the solution space, to find the optimal solution, shown as the blue point in Figure 7.

Figure 7: Optimal solution

It is important to note the optimal solutions identified may vary slightly from what is technically
optimal when considering the true complex interactions of active power flexibility dispatch,
particularly due to the complex non-linear apparent power sensitivities to active power injection.
Furthermore, as discussed earlier, the constraints are more complex than indicated in this example.
The constraint regions in the diagram are parametric, indexed by several sets which characterise the
mathematical problem. For example, the dispatch requirement for a target constraint is
parameterised by network scenario and date/time.

This relatively simple example is used only to demonstrate the inner workings of the solver. The real-
world problem will exhibit multiple dimensions of complexity and interactions as more responses and
requirements are added to the problem. It is these complex interactions which a simpler ranking
approach would be unable to resolve and, therefore, necessitates the use of the implemented
mathematical optimiser.

Final Report
Select and Dispatch Tool 20

Implementation of optimisation algorithms within the space of continuous feature sets presents some
data handling issues. From the experience of this project, the most prominent cases arise due to
rounding. Rounding is typically used to simplify the optimisation problem, however, can lead to
unintended consequences such as omitting solutions from the feasible region, or negligible responses
being considered towards a solution. These cases should be handled with care when handling non-
integer optimisation problems.

3.4 Back-end Interface

The S&D tool requires an external interface with only the PSA tool. As summarised in section 2.3.4,
PSA and S&D communicate by monitoring a shared file system. Both tools implemented their own
software for reading, writing, and monitoring this space, and this is referred to as a filesystem
watchdog. The specification of this interface was planned during early development and adapted
collaboratively if required. Both systems send and receive Microsoft Excel files, and the filename
indicates important information such as the type of request, the relative analysis time of the request,
as well as meta-information including the origin of file (S&D/PSA) and the process by which it was
created (manual or automatic – MAN/AUT). The contents of the file varied depending on the type of
file being delivered.

Through this interface, S&D and PSA are engaged in two related but unconnected data flows; PSA
sending S&D flexibility requirements, and S&D requesting Sensitivity factor and candidate selection
validation calculations from PSA.

PSA sends requirements at a predefined time frequency. S&D’s watchdog monitors the file system for
these files and then passes them to the tool’s processing function which interprets and produces
requests based on the requirements.

The S&D tool will communicate with PSA to obtain sensitivity factors and when attempting to resolve
constraints with the available responses and contracts. Both steps require PSA to perform a power
flow analysis and return results. S&D will send all the relevant request files and then wait for a
response from PSA. This loop continues until S&D has completed its process by resolving the
constraint, or until 10 iterations have been reached in which case the ‘best’ selection is taken.

3.5 User Interface

This section provides a general overview of the S&D tool GUI. The user interface has a home page,
main menu, and a page for each stage in the Select & Dispatch process (publish requests, select
responses, and dispatch), and also contains information relevant to the current market gate. On each
page data is presented to the user in a table view, which can be filtered and queried as required.
Finally, an explore data page allows users to access and query all aspects of the tool.

Final Report
Select and Dispatch Tool 21

Figure 8: Homepage of tool

The S&D tool home page is shown in Figure 8 and provides an overview of the tools current state and
provides market information required by users to co-ordinate the market and dispatches. It also
provides a summary of the total energy which has and will be provided by current and future contracts,
grouped into cards by stage and market timing. Each card also includes a help button on the top left.
Clicking this shows a description of the card’s contents and how they should be interpreted.

The “Requests” page shown in Figure 9 presents all upcoming constraints which have been identified
by PSA in the “Upcoming Constraints” tab, and the “Upcoming Requests” tab describes every request
which has been generated for the constraints. The export requests button downloads a truncated and
formatted version of the upcoming requests, designed specifically for the DSO swivel chair user who
is transferring requests to a neutral market facilitator (NMF) to create an auction.

Final Report
Select and Dispatch Tool 22

Figure 9: Requests window of tool

The “Select” page initially presents the user with all requests whose auction should now be active,
with pending and accepted responses presented in further tabs. From here, the user can upload a
.CSV4 file of all responses which have been collected by the NMF following the previous stage. For the
technical trials, this was a manual operation performed by the DSO swivel chair user. In a full BAU
system, this process of passing data between systems should be automated to both minimise user
error and administration time.

The pending responses tab describes all responses which have been uploaded, regardless of whether
they have been accepted or rejected. From this window, the user may adjust these responses if
necessary, and the tool would recalculate and adjust the set of selected responses. The “accepted
responses” shows only the responses which have been accepted by the tool and will be promoted to
contracts once the auction ends. The user can also export the decisions made for each response as a
CSV so that the DSO swivel chair user can feedback to responders.

4 The format of the CSV file was agreed and provided in the Low-Level Design (LLD) document of this
tool. Further details on the LLD can be requested via FNP.PMO@sse.com.

mailto:FNP.PMO@sse.com

Final Report
Select and Dispatch Tool 23

Figure 10: Select page of tool.

The “Dispatch” page shown in Figure 10 describes every contract which has been selected by the tool
for dispatch, along with the specific amounts required by each responder at each time step to resolve
the constraint. The “Export dispatches” button downloads a compiled and formatted CSV of all
dispatches.

Figure 11: Dispatch page of tool.

Each table also includes a ‘sensitivity factors’ switch in the bottom left-hand corner. This adds the
most recently calculated sensitivity factor (SF) to the data displayed on screen (which is relevant for
the decision-making process. i.e., the SF which the response has against the constraint is offered
flexibility to resolve or the SF which the contract had against the constraints its dispatching against).
This feature was added to improve the transparency and aid the understanding of the tool’s decisions.

Final Report
Select and Dispatch Tool 24

The explore data page allows the user to navigate the full database of the tool using the same table

interface as the other pages.

Figure 12: Explore data page

The “General Settings” window shown in Figure 13lets the user modify meta-information about the

operation of the tool, e.g., market timings and total contract value (TCV).

Figure 13: General settings window

Final Report
Select and Dispatch Tool 25

Several additional features were also added to the tool to help improve the user experience. Two to
note are the context view window, and the live log.

Figure 14: Context window view for all data related to request ID 2888

At any point, the user may open a sub-view window of all records related to single request, as shown
in Figure 14. This feature was added during the trials, so the DSO swivel chair user can view all data
for a full process, from creating requirements to dispatches, in a single window.

Finally, a live log is accessible from the tool’s main menu. A user can access this at any time to see
what the tool is currently processing, and to check if any errors have occurred due to any recent inputs
or changes. This proved particularly useful for identifying issues quickly.

3.6 Security

During the trials, the server and all its data were hosted on, and only available through, an Azure
virtual desktop environment which was accessed through a virtual private network (VPN). This
environment included extra security levels, i.e., required 2 factor authentication, and only a small
number of the team were granted access. For the S&D tool itself, a basic login system was
implemented to manage user privileges.

These layers of security were considered sufficient to keep the trial secure. Therefore, it was deemed
unnecessary to include further security considerations in the implementation of the tool.

A business as usual (BAU) solution would require some additional layers of security i.e., extra
authentication layers, and database encryption (salting/hashing at the minimum), for all modes of
accessing the tool, i.e., the user interface and all internal/external s. To an end user this would appear
as a full login system and token management. Adding these in would provide additional security in the
event an unauthorised person gains access to the secure environment.

Final Report
Select and Dispatch Tool 26

4 Results of S&D Testing

This section outlines the different types of tests carried out on the S&D tool by the development team.
These can be split into two types – automated and manual.

Automated testing of the tool’s backend code was carried out in two key stages: (i) as part of the
requirements testing, confirming that the tool meets the requirements outlined by SSEN, as well as
(ii) functional testing, which helped the development team ensure that code was operating as
expected during development. More detail on these tests is included below.

Additionally, manual testing of the frontend GUI was also performed. This did not follow a formal
process due to the relatively simple nature of the GUI, and instead were designed as a “sense check”
that visualisations, icons, etc looked and performed as intended.

4.1 Requirement Testing

These tests are designed to ensure that any tool or software developed meets the needs as outlined
by SSEN. For each requirement, the development team created automated tests which performed the
corresponding process and then checked that the tool’s behaviour matched the required outcome of
that process. These tests are entirely written in code and are standalone tests – meaning they must
also simulate the expected behaviour of other integrated or interfaced processes, for example the
interface between S&D and PSA. Additionally, these tests are also used to validate the tool’s
transferability to the Azure desktop environment by running them on both our local environment and
azure environment.

Ensuring the tool passes each of these requirement tests confirms that it is meeting the minimum
specified requirements. For most cases, a single, considered test is written per requirement or set of
closely related requirements. These tests are performed exclusively for typical system behaviour.
Therefore, they did not cover the edge cases which might come about during live trials and usage.
Capturing these cases during development would have proved very difficult to anticipate, but it was
expected that the more common of these cases would be captured during UAT.

As the project developed, the scope and priority of these requirements tests were adjusted to coincide
with updates to the tool’s specification and any changes in the tool’s processes.

These tests were used throughout the development phase of the project and during maintenance to
ensure any changes did not have a detrimental impact on the tool meeting its specification.

For final confirmation of the tool’s ability to meet the requirements, the full requirements testing suite
was applied to the final iteration of the tool’s code. The S&D tool passed all tests, and confirmation of
this is shown in the test report summaries included in Requirement testing results.

4.2 Functional testing

The development of the S&D tool was carried out in conjunction with unit tests, following the
principles of test-driven development. Test-driven development involves writing tests for required
functions before or concurrently with writing the corresponding code, thereby guiding the
implementation process, and ensuring the code functions as intended.

The decision to implement these tests was based on the significance and sensitivity of the individual
functions within the tool. To optimise efficiency and avoid redundant work, certain requirement tests
were deemed sufficient to evaluate specific functional aspects of the code. For instance, the
mathematical solver and its supporting code were rigorously tested by incorporating a diverse set of
requirements and responses in these tests.

Final Report
Select and Dispatch Tool 27

In cases where a sub-component of the tool held critical importance but was not adequately covered
by requirement tests, additional basic tests were meticulously designed and implemented. These tests
comprehensively covered each function, context, and scenario related to the PSA interfacing and
communication through the API. The scope of these tests encompassed typical scenarios, edge cases,
and error handling, thereby addressing potential challenges that might arise during real-world trials.

This testing approach complements requirement testing, which are specifically for demonstrating
satisfaction of a predefined specification of requirements. Functional testing serves as a continuous
feedback loop to support development by allowing for easier identification of deviations from the
intended functionality.

4.3 Testing and development during UAT and trial blocks

As part of the efforts to adopt continuous integration processes, automated tests were performed
whenever any changes were made the code base. These tests were conducted on the Azure DevOps
service by the developers making the changes on their local machines.

During UAT and the live trials, several bugs and essential enhancements were uncovered. When these
were identified, an issue was created on the Azure DevOps platform and a member of the TNEI team
would begin working towards resolving that issue. Once completed, and after review, the solution
would then be pushed to a staging version of the S&D tool for testing. These logs are compiled in
Appendix A – S&D Change Logs S&D Change Logs. Change logs covering these updates and any
potential impacts were then issued to the TRANSITION team.

A large proportion of these changes related to the GUI, but there were also some changes to the
behaviour of the tool’s main processes. Notably the automated creation and handling of dynamic
requests, interfaces with PSA when points of ambiguity were identified, and improvements to the
efficiency of the solver’s iteration process5.

5 These changes are described in the amended LLD document, a copy of which is available upon request.

Final Report
Select and Dispatch Tool 28

5 Learnings and Recommendations

The table overleaf reflects points for learning and opportunities to consider in future, our and their
key insights and takeaways gained through each stage. We have grouped these into the following
categories:

• Design and development: The modular approach taken to development was found to be very
helpful, although there were some rare and unforeseen issues that arose due to interactions
between different bits of the tool. However, it may have been beneficial to plan from the
outset for using a more agile, iterative approach to design and development, embracing all
the principles and practices of DevOps through every stage.

• Testing: Tests were developed in parallel to each module to ensure they behaved as expected.
However, some time for testing was lost due to the design of the tool taking longer than
anticipated to finalise. This also affected User Acceptance Testing, with some issues only
discovered very late. Moreover, less refined requirements proved to be challenging to
explicitly test due to the absence of some specific details around the desired criteria.

• Integration: The file system interface was critical to both S&D and the PSA system and was a
focus during the design phase. However, there were still some slight differences in
assumptions and approaches made by developers, which led to some issues during testing.
The watchdog system operated well, however there was some duplication of effort due to
S&D and PSA having separate watchdogs. It would have also been beneficial to spend more
time evaluating different optimisation solver options (in terms of accuracy, reliability, and
computation time).

• User Experience: A bespoke Graphical User Interface (GUI) was developed for users of the
tool, however, after design, there was relatively limited time available for end-users to test
this and provide feedback, and some very good suggestions could not be incorporated. Issues
and bugs within the GUI proved to be difficult to identify as this was reliant on manual use. A
thorough manual testing framework, or even an automated framework, could have been
useful. A further significant challenge was that, while the underlying optimisation approach
was completely transparent, there was sufficient complexity that it was viewed by users as a
black-box, with insufficient outputs within the tool to explain every decision recommended
by the tool.

• Ways of Working: Both SSEN and TNEI provided multi-disciplinary teams, and roles and
responsibilities were, in general, clearly defined. Some of these roles were harder to separate
in practice: for example, the TNEI team ended up requiring a detailed knowledge of how PSA
worked, while at the outset of the project it was expected that all that mattered was the
interface. An additional role with responsibility for the entire suite of integrated tools
(including S&D, PSA, and the swivel-chair role) could have proved useful – considered as a
Solution Architect. The overlapping interaction of the design and development phases
required upkeep of a dynamic design document, which would be the primary responsibility of
the Solution Architect. This role would involve maintaining a holistic overview of the changing
interfaces, assumptions and functional processes involved across the entire system.

• Select and dispatch for decision support: Some of the more complex practical details about
how flexibility services are procured and dispatched – such as maximum dispatch durations
and the inability to partially accept responses - were not reflected in the S&D tool’s design.
This would need further development in the future but would require a more onerous type of
optimisation. In addition, more thought is required about how to deal with cases where there
is insufficient flexibility availability. For the purposes of the trials, TNEI and SSEN have used

Final Report
Select and Dispatch Tool 29

the concept of “dummy flexibility”, but for business-as-usual implementation a more realistic
alternative will be required.

Final Report
Select and Dispatch Tool 30

Table 2: Learnings and future opportunities

Learnings and impacts

Experience Opportunity

Section 1: Design and Development

This summarises learning about the design and development of the Select & Dispatch tool.

Modular approach

• The team have taken a modular approach to development which ensures all

components of the S&D system are separated and their interactions are fully

considered. This meant that the team could carry out isolated and concurrent

development and testing of the various functional modules.

• The initial layout of this modular approach did not fully consider all

requirements of the tool prior to starting development – although, this full

consideration may have been impossible in practice. This resulted in some

moving and manipulating code to integrate unforeseen features which could

have been avoided. However, this initial layout made making these subsequent

changes far easier.

• Experience from this project highlights that concurrent realisation of user level

requirements, development, testing and deployment, without finalising

interfaces results in inefficient development of the tool due to the need to

rewrite and re-implement code.

• Furthermore, attempting to thoroughly test individual modules before this

solidified specification was confirmed resulted in stagnated development which

could have been avoided.

Limited feedback loop from a lack of an agile approach to design and development

• The feedback within the project provided an opportunity to improve the team's

understanding of user requirements. Through iterative development and close

collaboration, the project team gained valuable insights into the specific needs

• Building on the improved understanding of requirements, future projects can

leverage this knowledge to iteratively refine and clarify the user needs. This can

involve continuous communication and collaboration with stakeholders to

Final Report
Select and Dispatch Tool 31

Learnings and impacts

Experience Opportunity

and expectations of the users, resulting in a clearer understanding of the

project requirements.

• The sequential design and development process allowed the team to uncover

and address system limitations and constraints. By encountering these

limitations during development, the team gained a deeper understanding of

the technical boundaries and challenges, enabling them to devise appropriate

solutions.

ensure that the evolving requirements are effectively incorporated into the

ongoing development process.

• It is possible to enhance user satisfaction by incorporating a deeper

understanding of user requirements and addressing any system limitations,

leading to an improved user experience.

• Aiming to deliver a minimal working system – even if it has incomplete features

– at an earlier stage of the development phase would enable early feedback.

Experience has shown that this is vital to effectively identify and resolve issues,

thereby making any required changes easier to manage.

DevOps as a set of principles and practices

• DevOps is a set of principles and practices aimed at fostering collaboration,

communication, and alignment between development (Dev) and operations

(Ops) teams to enable efficient software development, deployment, and

operation. The team have been focussing on bringing in these practices into

our development process.

• The Azure DevOps environment provides a set of tools which are required to

follow these practices. The teams previous experience in similar tools, e.g.,

GitHub, made it very easy to adapt to Azure.

• Agile methodologies and DevOps practices enable organisations to adapt to

evolving requirements and changes in the business environment. By embracing

iterative development, continuous integration, and delivery practices, teams

can respond quickly to feedback and market needs, ensuring that the software

aligns closely with user expectations, even if that expectation changes.

• The adoption of agile/DevOps paradigms was limited to the development

phase of the tool when it should have been adopted from the outset of the

project as a part of projects planning and delivery timelines. Doing this could

have better navigated the essential changes which were identified during UAT

and live trials.

Final Report
Select and Dispatch Tool 32

Learnings and impacts

Experience Opportunity

• By embracing the core elements of the DevOps paradigms, the team was able

to work with a more controlled and predictable environment which allowed us

to navigate and resolve issues much faster than if we had decided to work in a

style which did not emphasise adaptability.

• This most likely played a significant role in reducing disruptions and delays.

Unexpected System interactions in Parallel Processing Environment

• The multi-processing system allowed the tool to process requirements and

responses simultaneously, ensuring there was no downtime for users.

• The team also devised a solution for exception handling within the tool’s

backend code. This meant the error was reported, but then the tool ‘rolls back’

the database to the state before the error. This technique was used to reduce

boilerplate code, improve readability, and allows users to amend any errors

before changes become permanent.

• Whilst designing this approach the team did not consider the rare scenario

where the database was being written to by both processes simultaneously.

Due to the rolling back system, when a second process attempted to write to

the database during this procedure a fatal exception occurred, and the process

crashed.

• The problem arose from interactions between systems which were thought to

be independent from each other. This is a learning opportunity for the

software team to deepen their understanding of the technology and take more

precaution when considering interactions like these.

• Fixing this problem during the trials would have required significant changes to

the code, and due to the intensive resource to do this a pragmatic solution was

adopted which where the issue was managed by resetting the program on the

rare occasion the issue occurred.

Final Report
Select and Dispatch Tool 33

Learnings and impacts

Experience Opportunity

Section 2: Testing

This summarises learning about testing of the Select & Dispatch tool.

Dedicated time for modular and systematic testing

• The modular approach described before enabled specified and isolated testing

of the system. Tests were developed alongside the implementation of each

module, ensuring their behaviour was complete and accurate.

• Overlapping testing with concurrent development and user feedback increased

the maintenance requirements for developers, necessitating higher support

and debugging resource. This increases the risk of errors and impacts the wider

timelines for deployment. Any change to a requirement would result in needing

to change the test, nullifying the previous work.

• Compressed development and testing timelines were observed from the

extended design period however, the original plan for delivery of the project

did not involve concrete timelines for dedicated testing of the system as a

whole. We recognise that regular modular testing is optimal for ensuring a

component of the wider tool can be integrated, however full integration tests

(as found during UAT and live trials) is essential in identifying any shortcomings

in the system or specification.

User acceptance testing - execution

• User acceptance testing (UAT) is intended as a dedicated testing phase where

users evaluate the software to determine it meets their requirements and

expectations. This is designed as the final check to ensure the software works

as intended. Despite compressed timelines for the project, time was made to

ensure some form of user acceptance testing was carried out which helped

identify and fix system issues before beginning live trials.

• The UAT phase posed specific challenges because of conflicting timelines and

the parallel development of interfacing systems. Some issues were then

discovered quite late in the project, approaching the end of dedicated

development time, towards the beginning of UAT testing. This would be

resolved by beginning UAT much earlier by adopting the methods discussed

previously.

Final Report
Select and Dispatch Tool 34

Learnings and impacts

Experience Opportunity

• The overlap between UAT and the live trials resulted in a much greater

complexity when integrating PSA and S&D systems, and any fixes to issues

which arose were difficult to deploy as thorough testing is usually

recommended prior to any update being integrated into a live tool. Both the

overlap between UAT and the IT infrastructure added complexities into this

process. Ideally, UAT should be given a much greater time frame, beginning

before the complete development of the tool.

Requirement definition

• An extended period of time was taken to define and clarify the requirements of

the system, enabling a clearer view of how the system will operate and work.

The team were able to implement full test suites which check the system’s

ability to implement each of the tool’s defined requirements.

• From a software development perspective, the mapping of requirements to a

definitive, functional, and unambiguous tests could have been executed more

effectively. The defined requirements of the S&D tool contained non-functional

elements which, while useful at a higher level, did not cover all of the nuance

required for software implementation. This approach cannot capture or discuss

the complexities which come with implementation.

• Additionally, the purely sequential approach to design and implementation

further exacerbated the issue, as several key questions were only uncovered

during implementation phase which could have been uncovered earlier if

design and development stages were agile and integrated.

• Any organisation - including TNEI - developing bespoke applications within or

without the power sector should engage in more ‘software forward’ high level

design processes typically associated with agile development, i.e., defining user

stories and clear specifications of tool behaviours and interfaces.

Final Report
Select and Dispatch Tool 35

Learnings and impacts

Experience Opportunity

Section 3: Integration

This summarises learning about the integration of the Select & Dispatch tool within SSEN’s IT environment, and with other systems (particularly the PSA).

Transparency of data exchanges

• The file-system interface served as a dedicated directory for data exchanges

between interfacing systems, PSA and S&D. This was envisaged as a means of

ensuring the communications process was transparent for non-developers i.e.,

users and operators of S&D and PSA, as well as providing a record of all data

and logs.

• As the project developed past the design phase, the underlying dependencies

of the file system interface quickly became complex and more difficult for non-

developers to review and digest.

• Some essential specifications of the contents of these data files i.e., the

uniqueness of IDs, was assumed rather than discussed. This discrepancy was

revealed during end-to-end tests and required changes to both the

interpretation and parsing of data.

• The exact actions and methods of engaging with this data exchange system was

not fully defined either, resulting in both systems interpreting and modifying

the system differently. Which has the potential of causing confusion from an

outside perspective. This is an aspect of such a system which needs to be

discussed.

• Developing a system which serves two conflicting purposes (efficient data

transfer, and transparent depiction of system processing) proved challenging

for developers and data-analysts.

Final Report
Select and Dispatch Tool 36

Learnings and impacts

Experience Opportunity

Watchdog systems

• The watchdog system, within S&D, was responsible for tracking, reading, and

distributing files between interfacing systems i.e., with PSA. This acted as the

channel for communication and as a trigger to begin processing requirements,

responses, sensitivity factors etc.

• Overall, the watchdog systems work reliably once adequate testing and

validation was completed.

• Generally, the development and maintenance overhead of a file-based

interface like the Watchdog system outweighed the benefit of transparency of

data exchanges.

• Differing approaches to system architecture resulted in the developers of PSA

and S&D creating their own Watchdogs which accommodate their architecture.

This could be viewed as duplicated effort.

Optimisation solvers

• S&D was successfully implemented using widely available open-source

optimisation solvers, meaning there was no cost associated with commercial

solvers. These solvers were generally able to solve the underlying Selection and

Dispatch problems very quickly.

• During the trials, some edges case where identified where specific solvers

struggled to find solutions – for example, due to rounding tolerances on inputs

which made solutions infeasible. If more time had been available, it would have

been beneficial to comprehensively test and evaluate different solver options

to identify a best option (in terms of accuracy, reliability, and computation

time).

Section 4: User Experience

This summarises learning about users experience with the Select & Dispatch tool.

GUI

• The GUI was developed in parallel with the backend and enabled users to view

and interact with the S&D processes. The GUI exists primarily as a user-friendly

view of the system’s internal database, filtering and showing only essential

information relevant to each page.

• Due to the compressed time scales, there was insufficient time for users to fully

engage with the GUI prior to deployment, and early user engagement with the

GUI had to be at a very high level. Early engagement with and use of any GUI is

vital in order to align the design with both the tool use cases and the user

Final Report
Select and Dispatch Tool 37

Learnings and impacts

Experience Opportunity

• Displaying some of the tool’s complexities graphically, i.e., market gate timings,

presented a challenge in visually communicating information in a way that

transforms the developers low-level understanding of the tool to a user’s high-

level expectation of the process, although this was eventually achieved.

requirements, and make sure that there is a common understanding between

developers and users.

• This could have been mitigated by providing working versions earlier in the

development process, and prior to the dedicated UAT phase.

• A suggestion was made to convert these U.I. elements to a Gantt chart style.

Through a more rigorous adoption of agile methodology with earlier chances

for feedback, this request may have had the opportunity to be incorporated.

• Issues and bugs in the GUI proved to be difficult to identify, and again due to

the compressed timescales the issues were generally uncovered during live use

of the tool during the trails, which could also have been mitigated through

earlier engagement with tool users. A further opportunity to consider would be

developing either a thorough manual testing framework, as well as closer

inspection of code, or an automated testing framework but this would require

significant additional time to develop.

Complex mathematical optimisation

• The core of the tool utilises a complex mathematical optimisation process. This

solver is fast, and the formulation is expandable and therefore can incorporate

new constraints, objectives, and features readily.

• SSEN and the TRANSITION team have endeavoured to communicate

transparently with a wide range of stakeholders about the processes and tools

used in the trials, and the complexity of the mathematical optimisation

problem proved challenging to communicate to a non-specialist audience.

• The nature of optimisation models makes it extremely difficult to report the

reasons for decisions in a non-mathematical form. This issue raised concerns

during UAT and trials regarding the ability to explain every decision. In future

projects like this one, developers should work towards better reporting of the

tools decisions and reporting of an optimisers reasoning should be considered.

Final Report
Select and Dispatch Tool 38

Learnings and impacts

Experience Opportunity

Section 5: Ways of working

This section summarises learnings about the ways of working employed within the project.

Interdisciplinary communication and terminology

• The scope of the project required input from a range of experts, including

software developers, power systems engineers, flexibility service managers,

mathematics/optimisation experts, etc. Each discipline has their own preferred

terminologies, interpretations, and ways of communication. This introduced a

challenge in ensuring all parties sufficiently understood each component of the

problem.

• To navigate this issue, the team employed a mix of communication approaches,

for example flow charts, examples spreadsheets, or mathematical notation.

These techniques helped the team to articulate and then effectively debate the

complex concepts and ideas involved in the project work.

• This was supported by forming and adhering to a glossary of terms early in the

project, which helped create a language which was mutually understandable.

• It was also very useful to have team overlapping skills and disciplines between

members of both the TNEI and SSEN teams. This aided in performing both

external internal communication

• It was anticipated that the responsibilities of the PSA and S&D tools would be

clearly separable. However, we found this separation was harder to achieve in

practice and the understanding of how each tool operates was missing key

components e.g., aggregating of sensitivity factors, the necessary uniqueness of

the run IDs etc. This could have been navigated by communicating a more

detailed understanding of how both tools operate, including what they expect

as inputs and deliver as outputs.

• A dedicated Solution Architect role would have helped to co-ordinate the

development of all of the required tools, and how they operate as a whole,

enabling developers to remain focussed on their own tool with co-ordination

from the solution architect. This is discussed in more detail below.

Roles and responsibilities

• Both TNEI and SSEN defined their team structure, including roles and

responsibilities, and agreed ways of working for both technical topics and

project management and reporting. This allowed technical discussions to

• This way of working was usually very effective; however, it was sometimes

difficult to reconcile differences in understanding or expectations between the

roles and teams due to the different areas of expertise. For example, if the TNEI

Final Report
Select and Dispatch Tool 39

Learnings and impacts

Experience Opportunity

remained focused, with appropriate project management oversight and

approval as required.

• Within this structure, the relevant technical experts for different subject matter

areas within both the TNEI and SSEN teams became clear. This developed

somewhat organically and was especially useful when specific questions or

issues arose, and those subject matter experts could discuss a point between

the teams and report an outcome or decision back to the wider team.

technical team had different understanding to the project management team it

took some time for us to effectively communicate the issue. Our usual

approach was to consider how best to present the issue, communicate it in

writing or via a short presentation, along with the options for resolving it. This

was an effective approach, but sometimes meant it took more time to resolve

than might have been anticipated, which was a challenge for the project overall

due to the tight timescales.

• The technical trials needed a combination of PSA, S&D, and the DSO swivel

chair roles to cover all of the required capabilities. For future projects of similar

complexity, it could be useful to include an additional role(s) working across all

teams that would be responsible for implementing the entire suite of these

tools/ roles. As discussed above, this role is often referred to as a System or

Solution Architect and holds the responsibility for delivering the overall project

requirements, whereas our adopted structure meant that most members of

the team were more closely aligned with just one element of this suite.

Meetings and workshops

• Regular technical and project management meetings were very useful in

keeping discussion focussed, as was the separation between these.

• Daily calls during UAT and live trials phases proved useful in keeping all

participants engaged in the ongoings of the trials and PSA/SND status

• One or two full-day in-person sessions early during design could have been very

useful in improving engagement and focus on the development of the tool.

Final Report
Select and Dispatch Tool 40

Learnings and impacts

Experience Opportunity

Section 6: Select and dispatch for decision support

This section summarises learnings about how the Select and Dispatch tool could function as a real decision-support tool.

Formalising the select and dispatch processes

• During the design phase, the team were able to formalise the commercial

processes which underpinned both the selection of responses and dispatch of

contracts, through mathematical formulations and flow charts. These provided

a very useful reference for discussions and allowed us to make a link with

existing approaches (e.g., OPF), where more reference literature is available.

This resulted in a full mathematical specification of the problem, which was

then easy to code and implement in the tool.

• The mathematical formulation was more complex than initially expected. The

initial expectation was that a simple ranking process, using set criteria, would

be sufficient. However, it was soon realised that it would only work for the

simplest cases and was not a generalisable approach. This meant that, once

tool was being used, not all colleagues / stakeholders could engage with it

easily.

Alignment with procurement strategy and commercial terms

• Both the TNEI and SSEN teams endeavoured to comprehensively define the

procurement strategy, create quantitative examples, formalised in process

diagrams or in a mathematical formulation.

• Both teams were pragmatic about what was needed in the S&D tool and what

could be managed by the DSO users (e.g., maximum dispatch durations, and

partial acceptance of flexibility).

• Future iterations of the S&D tool would need to reflect all the commercial

terms (such as customisable maximum dispatch times, no partial acceptance),

rather than these being managed by members of the DSO team.

• However, it is likely this would mean the optimisation engine would have to

adopt mixed integer linear programming (MILP). MILPs are more complex and

computationally expensive but would be required to solve for these additional

constraints.

Insufficient flexibility available from the market

• TNEI identified early that situations might arise where there is insufficient

flexibility available from market participants to resolve a network issue.

• While the backend solution kept the tool running, it did not provide insight to

the tool’s users as dummy flexibility results were not recorded, reported in the

Final Report
Select and Dispatch Tool 41

Learnings and impacts

Experience Opportunity

• The approach implemented for handling this was to use “dummy flexibility”

within the underlying optimisation in the backend. If there was insufficient

flexibility from the market, the solver was then able to fulfil the remaining need

using these dummy assets.

• This managed the issue for the S&D tool, meaning the network constraint could

be mitigated and the tool did not crash, and for the technical trials it meant

that flexibility service providers could continue to participate in the events.

UI, or accounted for in the PSA iteration loop exchange. To navigate this issue

during the trials there could have been some system in place which keeps

tracks of decisions like this that can be displayed back to the user.

• Moreover, using dummy flexibility is not a credible BAU option. DSOs should

consider what they will do if there is insufficient flexibility (e.g., load shedding?

short-term overloading?) and reflect this in their decision support tools and

constraint management processes.

Final Report
Select and Dispatch Tool 42

5.1 Recommendations

Reflecting on these lessons learned, our key recommendations are:

• Adopt a blended agile methodology across design and development. Adopting agile

methodologies across both design and development, like Scrum or Kanban, promotes

collaboration and frequent feedback loops between users/solution architects and developers.

An agile approach to development alone is entirely contingent on a completely well-defined set

of requirements and scope of the problem and solution. Adopting iterative and incremental

development enables continuous improvements and adaptability to changes. If this approach

had been employed within the development of S&D, the HLD and LLD phases of the project

would have been significantly compressed, if not omitted entirely. Instead, development of the

tool would have commenced much sooner in a modular fashion, based on defined user stories.

This might have involved developing the underlying optimisation solver first, then developing

the backend around it and then the frontend.

These early developments could then be used to gather feedback and iterate on the

implementation. In practice, this iterative approach ended up happening anyway, as issues

were identified during development or testing / trials that required design decisions to be

revisited. By adopting an agile methodology from the start, this iteration could be managed

deliberately and proactively.

• Define a Minimum Viable Product (MVP) early on. Adopting an MVP approach allows

developers to focus on implementing the core functionality of the tool that addresses the most

critical user needs. By doing so, agile development can quickly progress onto further feature

development while gathering valuable feedback from users on the initial MVP, allowing

developers to iterate and refine the tool based on wide and user input. Defining an MVP helps

in several ways:

• Faster time-to-production: Prioritising essential features and functionality can expedite
the development process and deliver the tool more quickly.

• User-centric approach: Obtaining user feedback on the MVP provides early validation
that the tool aligns with their needs and expectations, as well as prioritising any
changes.

• Risk mitigation: Focusing on the core features in the initial development phase
addresses technical risks and challenges early on, reducing the chances of encountering
significant issues later in the process.

• Adaptability and flexibility: Adopting an MVP approach creates room for incorporating
new ideas, responding to user feedback, and adapting the product to changing market
conditions. This flexibility means the product can evolve based on real-world insights.
However, one likely challenge is that users may be reluctant to accept that any features
of a tool are only “should” or “could” have features, rather than “must” haves.

• Incorporate dedicated time for modular and systematic testing. Modular testing should

“bookend” agile sprints, whereby the module is first tested in isolation and ultimately as part of

wider integration testing. Similarly, prior to deployment of the production tool, dedicated time

must be apportioned to testing of the system, considering boundary testing, and taking a

destructive approach. This will help to mitigate the challenges identified and ensure a more

effective and efficient development process.

Final Report
Select and Dispatch Tool 43

• Express functional and non-functional requirements in terms of clear definitions and direct,

comparable outputs. These software-oriented requirements would be based on higher level

requirements (like those in the RTC produced by SSEN for S&D) and developed in collaboration

with all parties. These requirement definitions would include explicitly defined interaction

points, as well as inputs and outputs. They could also incorporate, user stories to open

discussion and encourage producing a user orientated tool.

• Implement interfacing systems using programmatic methodologies, such as REST APIs, or

provide the interfacing functionality as deployable, modular code. Taking this approach will

significantly improve both the efficiency and consistency of interfacing. File-based interfaces do

provide transparency, and so these should be designed and developed as independent

modules for tracing decisions and communications between systems, but they should become

a child process of programmatic interfaces. Programmatic interfaces also allow for greater

flexibility and customisation, avoiding miscommunication on sending/receiving ends which can

take much more time to resolve. This might mean, for example, turning the underlying

calculations for both PSA and S&D into separate Python packages, that a live tool(s) could then

incorporate internally. This is similar to the approach taken for the TRANSITION baseline tool.

• Complex optimisation processing requires automated solution interpretation. Understanding

the decision-making process of complex mathematical optimisation mechanisms in a BAU

solution is crucial for a variety of reasons. Firstly, it promotes transparency, enabling

stakeholders to comprehend how and why specific decisions were made, thereby fostering

trust in the system. This aspect is particularly vital when the optimisation algorithm influences

high-stakes sectors such as the energy industry. Secondly, it facilitates troubleshooting and

improvement. By explaining each step in the decision process, potential weaknesses or errors

within the model can be detected, allowing for necessary modifications and enhancements.

Therefore, the implementation of a dedicated module for decoding the decision process of

these mechanisms is highly recommended in future developments.

Final Report
Select and Dispatch Tool 44

Appendix A – S&D Change Logs

The following is a record of the change logs issued alongside updates to the tool. These were
distributed via email to the SSEN Technical Team.

Each change log is a compilation of the changes made to the tool, combining changes made in each
previously non-reported revision which was not deployed. As the outcome of the trials is only relevant
to the versions of the tool which are live, specific information about these intermediate non-deployed
versions is not included in this report. That information may be obtained from the Azure DevOps
platform upon which development was conducted.

It is important to note that each of these changes does not represent a ‘release’ of the tool as
compressed timescales resulted in the need to deploy these intermediate versions.

Further information has been added to these change logs for the purpose of context and reasoning.

0.3.7b – 08/03/2023

• Backend API
o Ensure asset level reliabilities can be changed and updates the request creation

process.
o Ensure market membership is considered whilst response filtering.
o Increase timeout time for table GET requests to 4s.

▪ Extra processes resulting in performance bottleneck require more time to
process before the front end assumes an error has occurred.

• UI/Example data
o display dynamic requests to UI.
o Example data no longer assumes response ID
o display BSP and Primary columns on requests (for commercial grouping).

0.3.9b – 13/03/2023

• Enhanced data handling on response upload
o If all responses are invalid (i.e., by window/price ceiling/market membership, an

error will be thrown to the user)

• Commit all irrelevant requirements.
o Requirements that are ignored (for example a negative requirement outside of the

10-2 window) are committed and displayed in the tool.

• Display/export dynamic requests
o Users can now export and respond to dynamic requests.

• Filter market gate relevant records (from now, until end of market gate)
o The “upcoming” tabular data shows

requirements/requests/responses/contracts/dispatches that are relevant to the
current market gate.

o Requests are now displayed until the cut off time for providing responses.

• Assume all DCM request branches to be Cowley Local primary.
o Automatically generated DCM requests require some branch to be generated for as

S&D has no knowledge of network topology this was hard-coded to the Cowley local
primary

• Display AUT/MAN as a column across tables
o The tool now reports any data as originating from a manually or automatically

produced file.

• Content of PSA-NO-FLEX file is now irrelevant.
o SND no longer reads of interprets this file and does not expect any kind of content.

Final Report
Select and Dispatch Tool 45

• Generate example responses, created whenever the tool generates a request.

• Rename upcoming requirements page as upcoming constraints.

• Default DCM request of 20MW.

• Improve formatting of auction times in tables

• Update request timer
o This timer now counts down to the time at which the next auction begins i.e., time

left to publish request to NMF

• Update dispatch timer (countdown to end of notification for the next dispatch, action before
timer ends)

o This timer now counts down to the next dispatch notification deadline if one exists.
For example, if a DA SCM dispatch is expected for tomorrow (Tue 14th March at
5pm), the timer will count down to 1pm (4 hours prior to dispatch).

• Manage PSA requirement ID as “run ID_req ID” (within S&D)
o PSA requirement ID will be parsed and provided to PSA in selection/dispatch

response exchange process.

• Updated market schedule
o Week ahead requests made available by S&D from 6AM (instead of 8:30AM).
o Week ahead responses must be provided by 9AM, contracts made available by

11AM.

1.0.0 – 21/03/2023

• PSA Interface
o Various alignments with PSA file interface where differences where identified.

• Bug fixes
o Added AUT/MAN filter on tables.

▪ Allows user to filter the table for data related to either manual or
automated flexibility requirements.

o Added Sensitivity factor columns to tool for auditing
o Acceptance of dynamic responses

▪ All dynamic responses are now automatically accepted, a previously
identified bug prevented this behaviour.

o DA Auction start/end times
▪ Tool now displays auction start/end times relevant to both S&D and NMF

time scales to be given to swivel chair users and participants respectively.
o Timers on home page show correct durations after feedback.

▪ Request – time left to publish to NMF.
▪ Select – time left to upload responses.
▪ Dispatch – time left to notify IA of upcoming dispatch.

o Tool now includes all upcoming dispatches in table.
▪ Previously showed upcoming dispatches for current window only

• Outstanding issues to be resolved

o Handling SEPM services
▪ Considering the change in implementation based on last week’s discussions,

S&D’s candidate check process is being refined to account for negative
residual flex.

o Implement ordering of table data columns
▪ The current order is arbitrary and inconsistent.

o Asset tab on explore data page incorrectly highlighted on explorer tab load.
▪ There is a mismatch between the GUIs internal state and what is displayed,

causing the tool to display the responses table, whilst claiming it’s the asset
table.

Final Report
Select and Dispatch Tool 46

1.0.4a – 04/04/2023

• New Features:

o Automated SQL database backups at each decision point.
▪ Enable viewing and navigating between states of the tool before each

meaningful interaction – uploading/modifying responses and receiving
requirements.

o Automated backups of any response uploads.
▪ All uploaded responses are saved to the PSA2SND folder for backing up and

providing context.
o An improved log window which enables the user to view the processes being carried

out by the tool.
o Additions to the context menu view for easier navigation of results, right click a

response, request, or dispatch to view all data directly linked to its request it
satisfies.

▪ Enables a user to view the entire process for one request in a single window.
o Update handling of SEPM services as previously discussed.
o Implemented algorithm which sorts all data into a consistent form – IDs, data, then

time.
o Fixed asset tab wrongfully highlighted in explore data window.

• Bug Fixes:
o Fix to S&D’s internal process which caused a crash when handling dispatchable

requirements.

1.0.6 – 20/04/2023

• Process changes

o If a constraint is in the past, S&D uses the original forecast (highlighted when
reprocessing S&D analysis).

▪ This was added to enable reprocessing of the trials using historical data.
o Drop max residual flex exit condition.

▪ This arbitrary exit condition was forcing early exit of the candidate check
process, only in cases where the candidate check process was resolving the
linearization of sensitivity factors for a set of responses while a large
constraint resulted in maximum dispatch of relevant assets.

o Enforce max iteration = 3 while PSA is not aggregating responses for individual
assets.

▪ This will be increased when PSA is deployed with the aggregation of
responses/contracts at the SF calculation and candidate check phases.

• Bug fixes

o Manage rounding/tolerance of the solver.
▪ The outputs of the optimization solver included some floating-point

rounding errors which resulted in the tool exhibiting unexplainable behavior
in some cases. This issue was exacerbated by excessive volumes of dummy
flexibility to resolve a constraint. Due to the large volume of expensive
dummy flex, we observed a bias towards this. We have since adjusted the
tolerance and method of the solver to prevent this.

o Prior dispatches of SEPM services are considered in the correct direction (export).
o Improve filtering of responses/contracts.

▪ To avoid calculation of responses outside the constraint window for a given
service.

Final Report
Select and Dispatch Tool 47

o Dispatch table/export outputs have been corrected and distilled down to support
the swivel chair user in the notification process.

1.0.7 – 02/05/2023

• Bug Fixes:

o Prevent responses from providing a response window outside the request's date.
o Fix duplicate dispatches in NMF export file caused by asset reliability data.
o Remove expected columns when processing sensitivity factors which are no longer

sent by PSA. (“offered_power_kw”, “secondary”)
▪ The SND file system enforces a strict policy on received files to prevent

erroneous data, this makes it inflexible against changing file content.

• Technical Changes:

o Added functionality to update asset table by providing new data as a static csv
o Updated asset data to v6.
o Reject responses which extends beyond the date of the request window.

▪ The tool would previously accept responses which offered flexibility over
several calendar days, the processes of the tool do not expect this and
results in unexpected behaviours.

• Performance enhancements:

o Filter out sensitivity factors where no overlap exists between requirements and
contracts during request creation.

Appendix B – Requirement testing results

The figures below show summary reports of the results of automated testing of the S&D Tool code.

Figure 15: Requirement test results

Figure 16: Response selection test results

Figure 17: Dispatch selection test results

